close this message
arXiv smileybones

arXiv Is Hiring a DevOps Engineer

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring a DevOps Engineer

View Jobs
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2410.02241

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Computational Engineering, Finance, and Science

arXiv:2410.02241 (cs)
[Submitted on 3 Oct 2024]

Title:MIGA: Mixture-of-Experts with Group Aggregation for Stock Market Prediction

Authors:Zhaojian Yu, Yinghao Wu, Genesis Wang, Heming Weng
View a PDF of the paper titled MIGA: Mixture-of-Experts with Group Aggregation for Stock Market Prediction, by Zhaojian Yu and 3 other authors
View PDF HTML (experimental)
Abstract:Stock market prediction has remained an extremely challenging problem for many decades owing to its inherent high volatility and low information noisy ratio. Existing solutions based on machine learning or deep learning demonstrate superior performance by employing a single model trained on the entire stock dataset to generate predictions across all types of stocks. However, due to the significant variations in stock styles and market trends, a single end-to-end model struggles to fully capture the differences in these stylized stock features, leading to relatively inaccurate predictions for all types of stocks. In this paper, we present MIGA, a novel Mixture of Expert with Group Aggregation framework designed to generate specialized predictions for stocks with different styles by dynamically switching between distinct style experts. To promote collaboration among different experts in MIGA, we propose a novel inner group attention architecture, enabling experts within the same group to share information and thereby enhancing the overall performance of all experts. As a result, MIGA significantly outperforms other end-to-end models on three Chinese Stock Index benchmarks including CSI300, CSI500, and CSI1000. Notably, MIGA-Conv reaches 24 % excess annual return on CSI300 benchmark, surpassing the previous state-of-the-art model by 8% absolute. Furthermore, we conduct a comprehensive analysis of mixture of experts for stock market prediction, providing valuable insights for future research.
Subjects: Computational Engineering, Finance, and Science (cs.CE)
Cite as: arXiv:2410.02241 [cs.CE]
  (or arXiv:2410.02241v1 [cs.CE] for this version)
  https://doi.org/10.48550/arXiv.2410.02241
arXiv-issued DOI via DataCite

Submission history

From: Zhaojian Yu [view email]
[v1] Thu, 3 Oct 2024 06:26:49 UTC (627 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled MIGA: Mixture-of-Experts with Group Aggregation for Stock Market Prediction, by Zhaojian Yu and 3 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
view license
Current browse context:
cs.CE
< prev   |   next >
new | recent | 2024-10
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack