Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2405.19856

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Computation and Language

arXiv:2405.19856 (cs)
[Submitted on 30 May 2024]

Title:DevEval: A Manually-Annotated Code Generation Benchmark Aligned with Real-World Code Repositories

Authors:Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang, Lanshen Wang, Jiazheng Ding, Xuanming Zhang, Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, Yongbin Li
View a PDF of the paper titled DevEval: A Manually-Annotated Code Generation Benchmark Aligned with Real-World Code Repositories, by Jia Li and 17 other authors
View PDF HTML (experimental)
Abstract:How to evaluate the coding abilities of Large Language Models (LLMs) remains an open question. We find that existing benchmarks are poorly aligned with real-world code repositories and are insufficient to evaluate the coding abilities of LLMs.
To address the knowledge gap, we propose a new benchmark named DevEval, which has three advances. (1) DevEval aligns with real-world repositories in multiple dimensions, e.g., code distributions and dependency distributions. (2) DevEval is annotated by 13 developers and contains comprehensive annotations (e.g., requirements, original repositories, reference code, and reference dependencies). (3) DevEval comprises 1,874 testing samples from 117 repositories, covering 10 popular domains (e.g., Internet, Database). Based on DevEval, we propose repository-level code generation and evaluate 8 popular LLMs on DevEval (e.g., gpt-4, gpt-3.5, StarCoder 2, DeepSeek Coder, CodeLLaMa). Our experiments reveal these LLMs' coding abilities in real-world code repositories. For example, in our experiments, the highest Pass@1 of gpt-4-turbo is only 53.04%. We also analyze LLMs' failed cases and summarize their shortcomings. We hope DevEval can facilitate the development of LLMs in real code repositories. DevEval, prompts, and LLMs' predictions have been released.
Comments: Accepted by the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). arXiv admin note: substantial text overlap with arXiv:2404.00599, arXiv:2401.06401
Subjects: Computation and Language (cs.CL); Software Engineering (cs.SE)
Cite as: arXiv:2405.19856 [cs.CL]
  (or arXiv:2405.19856v1 [cs.CL] for this version)
  https://doi.org/10.48550/arXiv.2405.19856
arXiv-issued DOI via DataCite

Submission history

From: Jia Li [view email]
[v1] Thu, 30 May 2024 09:03:42 UTC (846 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled DevEval: A Manually-Annotated Code Generation Benchmark Aligned with Real-World Code Repositories, by Jia Li and 17 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
view license
Current browse context:
cs.CL
< prev   |   next >
new | recent | 2024-05
Change to browse by:
cs
cs.SE

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack